
A Distributed Content Storage Model for Web Applications

Mark Wallis, Frans Henskens, Michael Hannaford
Distributed Computing Research Group

University of Newcastle
Newcastle, Australia

Email: mark.wallis@uon.edu.au

Abstract—Vast quantities of information is now being stored
online. Web applications currently rely on monolithic storage
structures which place the sole responsibility of data storage,
protection and maintenance on the web application provider.
This research introduces the concept of a de-centralised ap-
proach for information storage online. Distributed storage
techniques are used to address concerns with the classic
monolithic approach while also addressing issues such as data
ownership concerns for personal information. The research
results in the presentation on an API that allows distributed
storage of information with seamless integration of data into
the traditional Web 2.0 model.

Keywords-distributed; storage; personal data; ownership.

I. INTRODUCTION

The current breed of Web Applications, known as Web
2.0 [1], rely on monolithic storage models which place the
sole burden of data management on the web application
provider. Having the application provider manage this data
has resulted in problems with data ownership issues, data
freshness and data duplication, as has been covered by our
previous work [2]. As the majority of data in Web 2.0
is user-generated, it is suggested by this paper that the
responsibility for storing user-generated content should be
given to the data owner themselves. As such, this research
presents a distributed storage model, which allows web
applications to offload the storage and management of user-
generated content to storage systems managed by the data
owner. The Distributed Data Service (DDS) API allows web
applications to seamlessly present user-generated content
to a 3rd party user. The 3rd-party interacts directly with
both the web application and numerous DDS systems which
host the web application’s content. Data owners can manage
their data elements by interacting with a DDS directly
while also exposing this data to web applications via a
publish/subscribe model.

The justification behind a distributed storage model is
based on the concept that in a Web 2.0 application the
majority of information is generated in a distributed fashion
by end users. The term ’Web 2.0’ is a business generated
term, which can be traced back to 2005 when O’Reilly first
defined the concept of web generations [1]. At the time, Web
2.0 was identified as any web application that matched the
following criteria:

• The application represents a service offering and is not
pre-packaged software.

• The application data evolves as the service is used. This
is in contrast to applications in which static data is
generated solely by the application owner.

• A framework is provided that supports and encour-
ages user submission of software enhancements. These
submissions are generally in the form of plug-ins or
extensions to the web application.

• Evolution of the application is driven by the end user
as well as the application owner.

• The application interface supports interaction from mul-
tiple client devices such as mobile phones and PDAs.

• The application provides a lightweight, yet dynamic,
user interface.

A high-level overview of the Web 2.0 design is shown in
figure 1.

A key criterion of interest to this research is that evolution
of the website is tied to the degree of user interaction. This is
driven directly by the fact that the primary service provided
by a Web 2.0 site generally relies heavily on user-generated
content. The more that data owners interact with the website,
the greater the experience of all users. This paradigm has
proven popular because website owners are no longer solely
responsible for content generation. The fact that the amount
and richness of the data provided by data owners can be
directly tied to the success of a website only exacerbates the
problem of data ownership, as the contained data becomes
an important asset for the website owners. Without this asset,
they would have substantially less to offer to their user base.

This paper formally defines the interface used by the
distributed data service - the DDS API. Section II follows
with an overview of the problems which the DSS addresses.
Section III formally defines the DSS API as a specification
that can be used to implement distributed data systems using
a distributed content management model. It encompasses
all phases of the data management including the insertion
and retrieval of data by 3rd parties. Section IV describes
the proof-of-concept implementation provided by this paper
which includes multi-language and multi-platform compo-
nents. Sections V and V-C present performance metrics and
provide a comparison of the DSS solution against other
existing technologies. Section VI provides an overview of

2010 Second International Conference on Evolving Internet

978-0-7695-4185-3/10 $26.00 © 2010 IEEE

DOI 10.1109/INTERNET.2010.26

98

how the solution scales before Section VII presents an
overview and conclusion.

Figure 1. Web 2.0 model

II. PROBLEM DESCRIPTION

The problems with the existing storage models in Web
2.0 can be viewed from two aspects - the web application
and the end-user. From a web application viewpoint, mono-
lithic storage structures have resulted in the following key
problems:

1) Web applications must host and manage large-scale
database systems to store all the user-generated con-
tent in their data centre.

2) Since all the data is stored by the web application the
hosting network must bear the full load of transferring
that data between the monolithic storage structure and
the user-base.

3) Web application providers must deal with complex
privacy and regulation issues stemming from the fact
that access to user-generated content can sometimes
be restricted by privacy laws.

4) Monolithic storage models introduce large single-
points-of-failure. In a Web 2.0 model, the risk is that a
single Web application hosting valuable data may go
offline, either temporarily or permanently.

Three key problems affecting the end-user are data own-
ership, data freshness and data duplication [2].

1) Data ownership is the most important issue of the
three. This relates to the fact that 3rd party web
applications can currently place restrictions on the
usage of a user’s data just because they store it locally
on their servers. Data owners are forced to agree to
EULAs to use services that can take away the owner’s
rights to their own data, despite them owning the
original data [3].

2) Data freshness refers to the situation in which a user
provides data to one or more web applications and
that data changes at a later date. The original data
provided to the web applications then becomes stale,
unless the user is able to recall and update all web
applications to whom the data has been provided. The
manual user update would be performed on a per-web-
application basis, possibly dealing with access issues
such as expired login or forgotten credentials.

3) Data duplication refers to the situation in which mul-
tiple web applications store copies of the same piece
of data. While the associated implementations seems
trivial when considering such pieces of data as a single
postal address, the issue expands dramatically when
dealing with multimedia data such as image, music
and video libraries.

These issues have all developed through the increased use
of SAAS and Web 2.0 architectures. SAAS (Software as a
Service) is a model where software is provided as an online
service as opposed to a distributed executable piece of code.
While the benefits of a SAAS model are well documented,
it is the combined use of SAAS with the increased level
of user-content being stored online which has led to the
above problems. The model presented in the remainder of
this paper resolves these issues while also maintaining the
benefits of SAAS and the Web 2.0 model.

III. MODEL: DDS API

The model presented in figures 2 through 6 addresses
the identified problems by introducing additional technology
that allows storage of data to be offloaded from the web
application. Instead, the storage is made the responsibility
of 3rd party storage providers. These providers lease storage
services to individual data owners, and act as a ’single
version of the truth’ provider for that piece of data. Data-
owners can either be corporations, business groups, public
entities or even individuals. Enhancements to the standard
web browser design allows this data to be accessed seam-
lessly for integration into displayed web pages. An API is
established to govern communication between the various
actors in the model. These web browser enhancements are
a stepping stone between existing browser technologies and
a complete Super-Browser implementation [4].

The model definition can be broken into three main areas:
storage, access and presentation.

99

A. Storage
The first phase of distributing data storage involves the

data owner subscribing to a distributed data service (DDS).
This service is responsible for storing the owner’s data
elements and is located either in-house or outsourced to a
specialised data storage provider. The subscription procedure
is shown in Figure 2.

Figure 2. SS Registration

To aid integration of the DDS into the data owner’s web
experience a new module is introduced called the ’DDS
browser extension’. This extension executes within the data
owner’s web browser, and is aware of the new distributed
data service model. When a Web 2.0 site requests content
from the data owner, he or she provides a link into the
DSS in which the data is stored. Later, when the data
is needed for display as part of a page generated by the
site, the displaying browser instance uses the embedded
link to directly retrieve the data from the owners’s DSS.
In current pilot implementations of the model, the module
is implemented using the browser-extension technologies
provided by most modern web browsers [5]. Future Super-
Browser implementations will see the module as a distinct
component executing within the web browser virtual ma-
chine [4]. Communication between the browser extension
and the storage service is achieved by inserting a DDS-
StorageService-AttachRequest into the HTTP response. This
request is transparently inspected on-the-fly by the browser
extension which allows the extension to re-write parts of the
response HTML dynamically. For the data-owner, the exten-
sion re-writes HTML form fields with links that activate a
browsing interface for selecting data objects. For the end-
user, the extension re-writes links into a remote DSS with
data returned from that specific DSS.

Implementation of the storage service registration process
and the browser extension is implementation specific, though
the API for linking the two components together is the first
aspect defined by the DDS API. As long as implementations
maintain the API for the DDS series of request/response
messages, interoperability is maintained. The security of
the connection between the browser extension and storage
service is also implementation specific, but it is assumed

that SSL encryption would be used at the tunnel level and
basic authentication would be used to authenticate the end
user to the storage service.

Phase two of the process, presented in figure 3, involves
the data owner publishing content to the storage service.
Again, the implementation is not restricted by the API as
long as each piece of stored data is given a unique identifier
that is global in that data owner’s domain. The unique
identifier comprises three components:

[name]:[path]@[system]
The name component represents an identifier for each

specific piece of data (for example, credit card). The path
component supports a hierarchical storage structure allowing
a data owner wishing to store various groupings of data
(for example, a data owner may have separate sets of
’personal’ and ’business’ data). The system component is
a unique identifier for the specific distributed data service.
It is generally a DNS name referencing the DDS itself. To
reduce vendor lock-in it is recommended that data owners
implement their own DNS pointers so that migration from
one DDS to another does not result in the reissue of unique
identifiers due to a change in the related system component.
Using DNS for the system component also solves the issues
of locating a specific entities DSS.

The data format proposed by this design is based on a
published set of XML schemas that represent each type of
data stored by the DDS. While enforcing data format appears
restrictive, it is necessary to ensure that interoperability is
promoted between web applications and storage services.
Such generic operability is one of the main requirements
for a solution that does not promote vendor lock-in.

Figure 3. SS Information Upload

B. Access

Once the data owner has uploaded data into their DDS,
the next stage is to allow web applications to subscribe to
this data. This is presented in figure 4. During the registra-
tion process for a DDS-enabled web application, the web
browser extension inspects the HTTP response traffic from
the application and detects a DDS-Application-Subscribe-
AuthRequest request. This request, and the corresponding
response generated by the browser extension, is the basis

100

for establishing a trust relationship between the web appli-
cation and the distributed data service. The request/response
messages are built on extensions to SAML [6] and act as a
basis for exchanging PKI credentials between the end user
and the web application.

Once a relationship is established, as shown in figure 4,
the data owner establishes a link between their data element
and the web application. This link is akin to the data owner
uploading content to the web application in a standard Web
2.0 scenario, except that in the DDS design the data owner
provides the unique identifier of the data as opposed to
uploading the content itself.

The browser extension again plays a key role, ensuring
that web applications can support both DDS-enabled and
classic Web 2.0 clients. Additional DDS-enabled attributes
are inserted into HTML input tags to inform the browser
extension that the data owner’s interface should be modified
to accept a unique ID value rather than actual data. This
linkage maybe optionally implemented by showing a pop-
up window containing an index of the data stored in the
DDS to allow the data owner to select individual pieces of
data graphically, rather than manually entering the unique
ID of the data.

Once the link is established between a piece of data
referenced by the web application and the storage location
for that data in a DDS, the web application is free to
request the data directly from the DDS. This is useful in
the circumstance where the web application is still required
to store a subset of data locally in order to provide a service.
For example, in the case of an image, the web application
may request and store meta-data relating to the size of the
image to assist in rendering pages during the presentation
stage. This also opens up the possibility of web applications
temporarily caching data, and is addressed in future research
using cache-coherency protocols.

C. Presentation

The final stage in the design, depicted in figure 6, is
the presentation stage. Here we define how the data is
transparently presented to end users. Again the browser
extension plays a key role. In this instance the extension
operates as a 3rd party does not have any direct relationship
to the DDS of the rendered data. For example, an end user
may access a web application and request to view an image
collage built from images stored in multiple DDSs owned
by multiple data owners.

In this instance the web application, instead of returning
raw data as in the classic Web 2.0 case, will return a
DDS-Present-DataRequest containing security information
exchanged between the web application and DDS during
the initial authentication request. This security information
is protected using PKI to ensure that it cannot be abused
to falsify links between a DDS and unauthorised web
applications and clients. The trust relationship enforced in

this case is between the web application and the DDS, hence
the DDS itself does not need to be aware of all the end users
who can render the data linked to a specific web application.
The DDS-Present-DataRequest message triggers a handoff
of the user from the web application to the DDS, allowing
the browser extension to request and render the data directly
from the DDS, under the web application’s instruction.

Under the DDS model, clients are required to perform
additional processing to pass-through and cater for the
DataRequest messages. Actual data transfer and rendering
functions remain largely unaffected other than the fact that
the web browser, on average, would be compiling single
pages from multiple data sources. These data sources would
be a combination of static data from the web application and
dynamic data sourced from one or more DDS systems. Web
page rendering engines in modern web browsers already
support rendering a single page from multiple components
so actual page rendering will appear identical to the end user
when compared with current solutions.

IV. PROTOTYPE AND EXAMPLE RUNTIME

A proof-of-concept prototype was developed to demon-
strate all of the components described in section III. The
prototype comprises the following:

• A skeleton distributed data service implemented in Java
and utilising the Amazon S3 service for data storage.

• A proof-of-concept DDS-enabled web application, im-
plemented in PHP, which is capable of subscribing to
a DDS and linking image and postal address data.

• A Mozilla Firefox web browser extension implemented
in Javascript to provide the data owner and end user
experience.

Multiple programming languages were selected for
the prototype to demonstrate the programming language-
agnostic nature of the DDS API.

The domain of the prototype is an in-house group address-
book application with which users can create a profile and
upload their office address and a profile photo. The address
and photo data are stored in the data owners DDS. The
following is an example runtime flow from the prototype
application. It describes a user linking some data and a
second user in turn rendering that data.

• User A (Bob) accesses the website for his DDS of
choice and begins the registration process

• DDS(Bob) sends an attachment request message
(through the HTML response) that is detected by his
web browser extension

– DDS:DDS-StorageService-AttachRequest() to Ex-
tension(Bob)

• Extension(Bob) requests Bob’s approval to attach to the
DDS and sends a successful response message

– Extension(Bob):DDS-StorageService-
AttachResponse(SUCCESS) to DDS(Bob)

101

Figure 4. Web Application Registration

Figure 5. Data Linkage

• Bob then continues to interact with the website pre-
sented by the DDS to upload his office address and
profile image data

• Bob now accesses the website for the address book ap-
plication (WebApp) and begins the registration process

• The Web Application sends an attach request to the
browser extension in Bob’s browser. The request is
signed with the web application’s private key and
includes a copy of the web application’s public key
for verification.

– WebApp:DDS-Application-Subscribe-
AuthRequest(publickey(WebApp), WebApp) to
Extension(Bob)

• The browser extension requests Bob’s authorisation to

allow that web application to subscribe to data within
his DDS and sends back a response. The browser also
forwards the request on the DDS so the DDS can
locally register the request.

– Extension(Bob):DDS-Application-Subscribe-
AuthResponse(SUCCESS) to WebApp

• The web application then allows Bob to upload an
image. Attached to the standard INPUT HTML el-
ement an additional DDS-Enabled=”true” attribute is
included. This instructs Extension(Bob) to render that
input element as a DDS data-lookup field.

• Bob selects his profile image from the pop-up DDS
interface and the browser extension provides the unique
ID of the data ID(image) back to the web application

102

Figure 6. Data Presentation

for storage.
• User B (Alice) now accesses the website for the address

book application and asks to view Bob’s profile.
• The web application inserts a data request message

into the HTML response that is received by Exten-
sion(Alice).

– WebApp:DDS-Present-
DataRequest(publickey(WebApp), ID(image))
to Extension(Alice)

• Alice’s web browser extension then establishes a direct
connection to Bob’s DDS using the system code pro-
vided in ID(image) and forwards on the data request.

• DDS(Bob) authenticates the request by validating the
signature of the message using the publickey(WebApp)
established during the authentication request stage.

• DDS(Bob) then returns the image for rendering by
Extension(Alice).

V. SYSTEM EVALUATION

A. Functional Requirements

The model presented in this paper sets out to solve
multiple issues stemming from the traditional monolithic
storage approach used by web applications on the Internet.

Distributing data element storage greatly reduces the
resource requirements of web applications. Storage require-
ments will decrease to only those needed to store meta data
on the web application itself rather than the user-generated
content. Bandwidth requirements for the web application
will drop as the application will only be returning basic
HTML, CSS, script and meta-content such as logos and
branding. All user-generated content will be directly trans-
ferred to the end-user from the related DDS systems. Lastly,
the web application provider will no longer be required
to meet varying privacy legislation requirements as they
will not be directly storing any user’s personal data. This
requirement is instead offloaded to the DDS providers, which

can operate in the same geographical region (and hence be
subject to the same legislature) as the data owner.

From the end-user perspective, the model addresses the
data freshness issue by replacing the N multiple copies of
a data element with N links that point to a single instance
of the data stored in the data owner’s DDS. These N links
are abstracted using DNS technology to ensure that a user
can migrate from one DDS to another without invalidating
the links. This removes the danger of a system accessing
obsolete versions of data by creating a single version of the
truth for every data element in the system.

The model also addresses the data duplication-created
storage wastage issue. This is true provided the number
of bytes used to store a link is less than the number of
bytes used to store the actual data. With this assumption we
achieve a reduction of the storage requirements in a single
system from (M * objects) to (N * objects) where N is the
size of a link and M is the average size of stored objects. A
web application would only be required to store the [system]
component of the link once per user.

Most importantly, the issue of data ownership is also
addressed. Use of owners’ data was previously dictated by
web applications, and was typically enforced by end-user
licensing ’agreements’. If a user wished to use a particular
web application they had no choice but to accept the EULA.
With the described DDS model, the user has more freedom.
It is safe to assume that the DDS itself may also enforce
a EULA on the end-user, but in this situation the user has
the buying power to procure services from another DDS
provider that requests a less restrictive license.

Security of the DSS system is provided in multiple layers.
All communication between the data owner and the DSS
can be protected using such existing technologies as SSL.
Basic authentication would suffice when the transport layer
is protected. The link established by the data owner with the
web application forms the basis of an authentication token

103

which is then used to authenticate end-users through the
web application into the data owners DSS. This handoff is
protected using the SAML handoff framework. All security
assertions as signed with the DSS validating the signature as
belonging to the data owner. This allows the DSS to ensure
that any request for data coming from an end-user, through
a specific web application, has been authorised by the data-
owner.

B. Comparative Evaluation
While the authors could not find any other model specif-

ically targeting the core issues of this research, there are
systems that are similar in nature to the DDS.

1) CMS: Parallels can be drawn between the DDS and
Content Management Systems [7]. The DDS can be viewed
as a personal CMS that allows its content to be seamlessly
embedded into 3rd party web applications. The DDS pro-
vides distributed storage of user content for web applications
that previously relied on monolithic storage repositories.

Current CMS solutions do not scale to the level required
to implement an Internet-wide distributed storage solution
due to their own reliance on monolithic storage structures.

2) CDN: Content Delivery Networks [8] are distributed
storage networks that allow companies to host data objects
on 3rd party networks. This allows them to take advantage
of geo-location based load balancing and link peering to
achieve reduced bandwidth costs. The typical CDN solution
is similar to the delivery paradigm in the DDS model
except that CDNs do not currently provide a seamless
way for data owners to push content into the network and
have that content transparently accessed by authorised web
applications. CDNs are static in nature, and do not scale to
the dynamic features that the DDS model provides.

3) Cloud SSP: The presented design ties directly into
the realms of Cloud Computing [9], Service-Orientated
architectures [10] and SAAS (Software-as-a-service) [11].
In a sense, a DDS can be seen as a SSP (Storage Service
Provider) in a Storage-as-a-service [12] cloud component
that allows other web applications to publish and subscribe
to data within the cloud. The DDS model described in this
paper, however, provides the necessary additional access and
presentation layers on-top of the storage to ensure that the
user experience is seamless.

Cloud computing can play an important part in the design
and hosting of the DDS storage system itself. As the
DDS API does not explicitly define the internal design of
the DDS, the vendor is free to, for example, use Cloud
Computing technologies, this providing a DDS solution that
benefits from the dynamic scalability and per-usage business
models that the Cloud provides.

C. Performance
The paradigm shift described in this paper dictates a

movement of data storage away from classic monolithic stor-
age, towards a distributed network of data storage services.

As such, performance has been analysed to identify over-
heads introduced by the additional access and presentation
complexity. While a small constant overhead was identified
due to the web application-to-DDS handoff requirements,
performance increases were also identified in the following
areas:

• Speed improvements under high-load situations due to
the reduced data transfer requirements of web applica-
tions. Instead of the web application being responsible
for provision of all the displayed data, the data transfer
requirements are shared between the web application
and the various linked distributed data services. This
has the potential to reduce the network load of web
applications.

• Client geo-locality can be utilised when users access
data that is geographical in nature and when the re-
quired distributed data services are located closer to the
client than to the web application. For example, a user
browsing images of their friends on a social networking
site would experience improved performance if the
DDSs for their friends were less network hops away
than the social networking web application itself.

• Speed improvements were identified in cases in which
a single webpage is built of multiple separately loaded
elements, a popular model in systems that rely heavily
on user-generated content. In the general Web 2.0
case, browser pipelining restrictions limit the number
of simultaneous network requests to any server. By
distributing data storage the impact of these restrictions
is reduced. Figure 7 shows the performance improve-
ments for the case in which a single page is built from
multiple data elements, each separately sourced. The
experiment was performed with a pipelining restriction
of four simultaneous connections per server. The results
show a marked improvement using the DDS system.

Performance of the DDS system can be adversely affected
by poor connectivity and bandwidth to specific DSS nodes.
The open market for storage services will assist in driving
competition between storage providers to reduce this risk.
Obviously there are upfront costs involved in the integrating
web applications with the DDS API, but these are offset by
reduction in ongoing costs bandwidth and storage costs.

D. Backwards Compatibility

In respect to backwards compatibility, the system supports
the ability for non-enhanced web browsers to retain access
to DSS-enhanced websites. Such access would be facilitated
using a ’proxy’ model where another system resolved and
presented the data from the DSS systems in a transparent
manner to the non-enhanced web browser.

These proxies could either reside as part of the web
application or as an intermediate service provided by the
end-users Internet Service Provider. While involving an
additional level of redirection reduces some of the benefits

104

Figure 7. Performance Results

provided for the end-user by the DSS model, it retains
the complete set of benefits for the data owner and web
application owner.

VI. SCALABILITY

The DDS system scales exceptionally well due to the de-
centralised nature of the data storage. Each user is free to
choose their own DDS host(s). As the user base grows, the
number of DDSs linked in a web application also grows.
Each unique DDS can execute within a cloud computing
environment, hence internal scalability is also supported in
the situation where large numbers of data owners choose to
use the same DDS (for example, all users of a particular
University may choose to use a University-hosted DDS
solution).

The DDS solution also scales into the corporate space
where each corporate entity could host their own DDS.
This would allow the employees of a company to share
data internally, as well as externally through restricted
publish/subscribe functions. The openness of the DDS API
allows corporate entities to protect their data by controlling
which web applications subscribe to specific pieces of data.

From an end-user perspective, the DSS system scales in
the same fashion as a traditional client/server model. The
transparent nature in the way the DSS browser extension
provides visibility of DSS-stored information ensures that
the end-users experience remains unaltered. From a con-
nection viewpoint, the constant overhead described in the
performance review above has no effect on the solutions
ability to scale when compared to traditional approaches.

VII. CONCLUSION

This paper addressed three concerns resulting from the
growing popularity of Web 2.0 applications by formally

defining a new paradigm for the distributed storage of
data on the Internet. The standard for web applications has
evolved, from static pages comprising a limited number of
elements to complex pages rendered from a large numbers
of elements. Web 2.0 has seen a trend towards bandwidth
intensive elements originally generated by end-users. As the
user take-up of Web 2.0 applications continues, it is sensible
to adopt a distributed approach that parallels the way content
is originally generated.

Problems caused by the usage of monolithic data storage
features have been mitigated by adopting a distributed stor-
age approach. Moving from monolithic to distributed struc-
tures is a proven technique for sharing load that has been
used extensively in other areas such as Cloud Computing
[9] and Transaction Management [13].

The key issue of data ownership is addressed for end-users
by ensuring that storage is the responsibility of distributed
data service(s) directly engaged by them. DDS providers are
liable to data owners, not to web applications, and hence data
owners have control over use of their data. Data ownership
is clear-cut because owners are responsible for both storage
of, and access to, the data.

Data freshness is addressed using a publish/subscribe
model and an enhanced SAML-based handoff model for
data presentation. The data rendered in web pages is always
the freshest version because it is sourced directly from the
data owner’s DDS. Data duplication is also addressed by
removing the need for data to be stored by web applications.
Appropriate web application registration and linking reduces
the number of copies of any piece of data to a single instance
stored in the DDS.

Current modelling and experiments show that overall
system performance is comparable to the existing Web

105

2.0 paradigm in the general case, with minor constant
overhead caused by the handoff procedures. When a web
application renders a page containing multiple data elements
from multiple DDS repositories, we observe a performance
improvement compared to existing technology due to the
bypassing of web browser pipelining restrictions.

Comparisons made against similar systems show that the
new paradigm can greatly increase the quality and protection
of data in a Web 2.0 space. For the DDS model to become
widely utilised the DDS API will need to be adopted as a
standard.

REFERENCES

[1] T. O’Reilly. (2005) What is web 2.0. [Online].
Available: http://www.oreillynet.com/pub/a/oreilly/tim/news/
2005/09/30/what-is-web-20.html. (cited June 2010)

[2] M. Wallis, F. Henskens, and M. Hannaford, “Pub-
lish/subscribe model for personal data on the internet,” in 6th
International Conference on Web Information Systems and
Technologies (WEBIST-2010). INSTICC, April 2010.

[3] AFP. (2009) About-facebook: backflip on data ownership
changes. [Online]. Available: http://www.smh.com.au/
articles/2009/02/19/1234632933247.html. (cited June 2010)

[4] F. Henskens, “Web service transaction management,” In-
ternational Conference on Software and Data Technologies
(ICSOFT), July 2007.

[5] K. Feldt, Programming Firefox: Building Rich Internet Appli-
cations with XUL (Paperback). O’Reilly Media, Inc, April
2007.

[6] OASIS, “Security assertion markup language (saml) v2.0
technical overview,” Working Group, Tech. Rep., 2007.

[7] A. Mauthe and P. Thomas, Professional Content Management
Systems: Handling Digital Media Assets. Wiley, 2004.

[8] M. Hofmann, Content Networking: Architecture, Protocols
and Practice. Morgan Kaufmann Publishers, 2005.

[9] G. Boss, P. Malladi, D. Quan, L. Legregni, and
H. Hall. (2007, October) Cloud computing. [Online]. Avail-
able: http://download.boulder.ibm.com/ibmdl/pub/software/
dw/wes/hipods/Cloud computing wp final 8Oct.pdf. (cited
June 2010)

[10] M. Bell, Introduction to Service-Oriented Modeling, Service-
Oriented Modeling: Service Analysis, Design, and Architec-
ture. Wiley and Sons, 2008.

[11] K. Bennett, P. Layzell, D. Budgen, P. Brereton, L. Macaulay,
and M. Munro, “Service-based software: the future for flex-
ible software,” in Seventh Asia-Pacific Software Engineering
Conference (APSEC’00), vol. 17th, 2000, p. 214.

[12] J. Foley, “How to get started with storage-as-a-service,”
InformationWeek Business Technology Network, 2009.

[13] F. A. Henskens and M. G. Ashton, “Graph-based optimistic
transaction management,” Journal of Object Technology,
vol. 6, no. 6, pp. 131–148, July/August 2007.

106

